Skip to main content

Live Transcription with Multimodal LLMs

Overview

Implement real-time audio streaming and transcription using Multimodal Large Language Models with low latency and automatic error correction.

Project Details

Skills Required

  • Python
  • WebSocket
  • Audio processing
  • Machine Learning
  • Performance optimization
  • Ruby on Rails
  • Real-time systems
  • LLM Integration

Acceptance Criteria

  1. Implement real-time audio streaming
  2. Support continuous mode
  3. Add automatic punctuation and formatting
  4. Implement context-aware error correction
  5. Enable streaming stability
  6. Support multiple audio formats
  7. Leverage multimodal capabilities for improved accuracy

Milestones

Phase 1: Streaming Setup (30-35 hours)

  • Implement audio streaming
  • Set up WebSocket connection
  • Configure LLM integration
  • Create basic transcription pipeline
  • Add performance monitoring

Phase 2: Real-time Processing (25-30 hours)

  • Optimize latency
  • Implement continuous mode
  • Leverage LLM for enhanced punctuation
  • Create context-aware formatting engine

Phase 3: Error Handling (25-30 hours)

  • Implement intelligent error detection
  • Add LLM-based correction system
  • Create recovery mechanism
  • Build stability features

Phase 4: Optimization (20-25 hours)

  • Performance optimization
  • Write comprehensive tests
  • Create documentation
  • System stress testing