Live Transcription with Multimodal LLMs
Overview
Implement real-time audio streaming and transcription using Multimodal Large Language Models with low latency and automatic error correction.
Project Details
- Complexity: Large
- Estimated Time: 100-120 hours
- Mentors: Navas (BE), Bijoy (BE)
- Project Links:
Skills Required
- Python
- WebSocket
- Audio processing
- Machine Learning
- Performance optimization
- Ruby on Rails
- Real-time systems
- LLM Integration
Acceptance Criteria
- Implement real-time audio streaming
- Support continuous mode
- Add automatic punctuation and formatting
- Implement context-aware error correction
- Enable streaming stability
- Support multiple audio formats
- Leverage multimodal capabilities for improved accuracy
Milestones
Phase 1: Streaming Setup (30-35 hours)
- Implement audio streaming
- Set up WebSocket connection
- Configure LLM integration
- Create basic transcription pipeline
- Add performance monitoring
Phase 2: Real-time Processing (25-30 hours)
- Optimize latency
- Implement continuous mode
- Leverage LLM for enhanced punctuation
- Create context-aware formatting engine
Phase 3: Error Handling (25-30 hours)
- Implement intelligent error detection
- Add LLM-based correction system
- Create recovery mechanism
- Build stability features
Phase 4: Optimization (20-25 hours)
- Performance optimization
- Write comprehensive tests
- Create documentation
- System stress testing